A fast method for variable-order space-fractional diffusion equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast finite volume method for conservative space-fractional diffusion equations in convex domains

Article history: Received 31 July 2015 Received in revised form 17 December 2015 Accepted 10 January 2016 Available online 12 January 2016

متن کامل

Fast Numerical Contour Integral Method for Fractional Diffusion Equations

The numerical contour integral method with hyperbolic contour is exploited to solve space-fractional diffusion equations. By making use of the Toeplitzlike structure of spatial discretized matrices and the relevant properties, the regions that the spectra of resulting matrices lie in are derived. The resolvent norms of the resulting matrices are also shown to be bounded outside of the regions. ...

متن کامل

An explicit high order method for fractional advection diffusion equations

We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...

متن کامل

Computational Method for Fractional-Order Stochastic Delay Differential Equations

Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...

متن کامل

Fast permutation preconditioning for fractional diffusion equations

In this paper, an implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is used to discretize the fractional diffusion equations with constant diffusion coefficients. The coefficient matrix possesses the Toeplitz structure and the fast Toeplitz matrix-vector product can be utilized to reduce the computational complexity from [Formula: see text] to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerical Algorithms

سال: 2020

ISSN: 1017-1398,1572-9265

DOI: 10.1007/s11075-020-00875-z